For investors
股价:
5.36 美元 %For investors
股价:
5.36 美元 %认真做教育 专心促就业
我们在前几期的文章中给大家简单介绍了数据质量管理的一些基础知识与常用方法等内容,而本文我们就通过案例分析再来了解一下,数据质量管理规则与标准分析。
Q1:数据质量评估的标准和数据质量的规则是什么?
A1:我觉得有好几个层面,一个是纯粹技术层面的评估,技术层面的评估可以去看,比如在这个工具上有了数据质量的一些要求,这个要求在我们检查实现的时候,实现的程度是不是满足了业务的需要?二个是现在图中展示的,就是当一个企业从组织层面想看一下数据质量的整个执行怎么样?那它不仅仅是包括技术内容本身,它还包含数据质量的整个管理有没有执行到位。
Q2:数据模型是否属于数据标准的范畴?
A2:是属于的,我们可以看一下前面的数据治理的理论框架,就是数据标准,它是一个的大词,和建模相关、和架构相关、和质量相关。当我们去看广义的数据标准的时候,它有一些和数据治理相似的地方,比如它会要求组织保障上有对应的人员,然后还有制度流程有没有对应的规范。那数据模型其实当我们把它拆解开来的时候,会发现这个模型里面,比如主数据的,还有因为模型这个概念比较大,主数据本身是数据标准管理的一个范畴,那主数据管理我们对它还会有标准的要求。
Q3:现在有哪些数据标准?
A3:数据标准这边有一个分类,如果是一个广义的数据标准的话,会包含很多方面。但是我们看到我们去讨论细而微的事情的时候,数据标准可以看里面的分类包含我们要对业务数据进行数据标准的管理,对主数据、参考数据还有指标进行数据标准的管理。
Q4:如何对历史留存的建模或者指标进行统一的梳理标准?
A4:刚才我们去讲数据质量的时候,有一个事后管控,就是对存量数据进行数据标准的管理,佳的实践根据我们过往的经验,其实是我们先选择。先我们应该有一个对应的经营管理当中的痛点,以这个痛点为抓手,然后我们去寻找这个数据所属的那个主题域,我们可以拿一个小小的主题域作为其中的一个试点,那这样一种方式是相对而言比较容易落地的方式。
Q5:在启动数据治理项目后如何解决甲方信息部门无法协调各业务部门,导致各类组织架构流程无法落地,只能停留在纸面上的问题?对乙方来说,如果要陪甲方无限度的持续治理,那项目的周期和成本如何处理?
A5:这个问题是作为乙方经常遇到的很常见的问题,我个人的建议好的解决方式还是甲方自己需要有一个组织的保障。我前面有一部分就是讲我们的对于数据标准和数据质量,如果要落地的话,组织保障相应的一些类别,我觉得可以参考这里面的内容。
如果说是那种特别大的企业的话,其实需要有个强有力的数据治理的部门,他们需要有非常高的去推动这件事情执行落地。然后如果是相对中小型的话,可以选择联邦的这种方式。对于乙方如果要陪甲方无限度地持续治理项目的周期和成本如何处理?这个问题比较难以回答,我觉得关键的其实是把我们的数据治理的范围确定好,甲方是做无限期的持续数据治理的时候,如果出现这样的问题,那是不是我们在做这个项目的前期没有把这个边界梳理得足够清楚?然后它应该是分阶段的,然后数据治理应该伴随着一个企业的整个生命周期,所以每个阶段只能做每个阶段的事情,我觉得关键应该是把我们的整个的每个项目的这个边界理清楚。
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!请读者仅作参考。更多内容请加抖音太原达内IT培训学习了解。