For investors
股价:
5.36 美元 %For investors
股价:
5.36 美元 %认真做教育 专心促就业
随着互联网的不断发展,越来越多的人都在学习达内Java大数据课程,而本文我们就简单来了解一下,大数据入门基础知识分享。
1、什么是大数据
大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据的定义是4Vs:Volume、Velocity、Variety、Veracity。用中文简单描述就是大、快、多、真。
Volume——数据量大
随着技术的发展,人们收集信息的能力越来越强,随之获取的数据量也呈爆炸式增长。例如百度每日处理的数据量达上百PB,总的数据量规模已经到达EP级。
Velocity——处理速度快
指的是销售、交易、计量等等人们关心的事件发生的频率。2017年双11,支付成功峰值达25.6万笔/秒、实时数据处理峰值4.72亿条/秒。
Variety——数据源多样
现在要处理的数据源包括各种各样的关系数据库、NoSQL、平面文件、XML文件、机器日志、图片、音视频等等,而且每天都会产生新的数据格式和数据源。
Veracity——真实性
诸如软硬件异常、应用系统bug、人为错误等都会使数据不正确。大数据处理中应该分析并过滤掉这些有偏差的、伪造的、异常的部分,防止脏数据损害到数据准确性。
2、如何学习大数据
在谈到学习大数据的时候,不得不提Hadoop和Spark。
Hadoop
Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。
Hadoop实现了一个分布式文件系统(HadoopDistributedFileSystem),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(highthroughput)来访问应用程序的数据,适合那些有着超大数据集(largedata
set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streamingaccess)文件系统中的数据。
Hadoop的框架核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。
简而言之,Hadoop就是处理大数据的一个分布式系统基础架构。
Spark
ApacheSpark是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UCBerkeleyAMPlab(加州大学伯克利分校的AMP实验室)所开源的类HadoopMapReduce的通用并行框架,Spark,拥有Hadoop
MapReduce所具有的优点;但不同于MapReduce的是——Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。
Spark是一种与Hadoop相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使Spark
在某些工作负载方面表现得更加优越,换句话说,Spark启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
Spark是在Scala语言中实现的,它将Scala用作其应用程序框架。与Hadoop不同,Spark和Scala
能够紧密集成,其中的Scala可以像操作本地集合对象一样轻松地操作分布式数据集。尽管创建Spark
是为了支持分布式数据集上的迭代作业,但是实际上它是对Hadoop的补充,可以在Hadoop文件系统中并行运行。通过名为Mesos
的三方集群框架可以支持此行为。Spark由加州大学伯克利分校AMP实验室(Algorithms,Machines,andPeopleLab)开发,可用来构建大型的、低延迟的数据分析应用程序。
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。