For investors
股价:
5.36 美元 %For investors
股价:
5.36 美元 %认真做教育 专心促就业
缓存技术的应用在许多软件编程开发项目中都是经常会用到的一个编程开发技术,而本文我们就通过案例分析来简单了解一下,旁路缓存策略的概念与应用分析。
CacheAside(旁路缓存)策略
CacheAside(旁路缓存)策略是常用的,应用程序直接与「数据库、缓存」交互,并负责对缓存的维护,该策略又可以细分为「读策略」和「写策略」。
写策略的步骤:
先更新数据库中的数据,再删除缓存中的数据。
读策略的步骤:
如果读取的数据命中了缓存,则直接返回数据;
如果读取的数据没有命中缓存,则从数据库中读取数据,然后将数据写入到缓存,并且返回给用户。
注意,写策略的步骤的顺序顺序不能倒过来,即不能先删除缓存再更新数据库,原因是在「读+写」并发的时候,会出现缓存和数据库的数据不一致性的问题。
举个例子,假设某个用户的年龄是20,请求A要更新用户年龄为21,所以它会删除缓存中的内容。这时,另一个请求B要读取这个用户的年龄,它查询缓存发现未命中后,会从数据库中读取到年龄为20,并且写入到缓存中,然后请求A继续更改数据库,将用户的年龄更新为21。
终,该用户年龄在缓存中是20(旧值),在数据库中是21(新值),缓存和数据库的数据不一致。
为什么「先更新数据库再删除缓存」不会有数据不一致的问题?
继续用「读+写」请求的并发的场景来分析。
假如某个用户数据在缓存中不存在,请求A读取数据时从数据库中查询到年龄为20,在未写入缓存中时另一个请求B更新数据。它更新数据库中的年龄为21,并且清空缓存。这时请求A把从数据库中读到的年龄为20的数据写入到缓存中。
该用户年龄在缓存中是20(旧值),在数据库中是21(新值),缓存和数据库数据不一致。从上面的理论上分析,先更新数据库,再删除缓存也是会出现数据不一致性的问题,但是在实际中,这个问题出现的概率并不高。
因为缓存的写入通常要远远快于数据库的写入,所以在实际中很难出现请求B已经更新了数据库并且删除了缓存,请求A才更新完缓存的情况。而一旦请求A早于请求B删除缓存之前更新了缓存,那么接下来的请求就会因为缓存不命中而从数据库中重新读取数据,所以不会出现这种不一致的情况。
CacheAside策略适合读多写少的场景,不适合写多的场景,因为当写入比较频繁时,缓存中的数据会被频繁地清理,这样会对缓存的命中率有一些影响。如果业务对缓存命中率有严格的要求,那么可以考虑两种解决方案:
一种做法是在更新数据时也更新缓存,只是在更新缓存前先加一个分布式锁,因为这样在同一时间只允许一个线程更新缓存,就不会产生并发问题了。当然这么做对于写入的性能会有一些影响;
另一种做法同样也是在更新数据时更新缓存,只是给缓存加一个较短的过期时间,这样即使出现缓存不一致的情况,缓存的数据也会很快过期,对业务的影响也是可以接受。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。