For investors
股价:
5.36 美元 %For investors
股价:
5.36 美元 %认真做教育 专心促就业
随着互联网的不断发展,越来越多的企业都引入了大数据技术,而本文我们就通过案例分析来简单了解一下,大数据数据湖技术应用发展趋势分析。
人工智能
由于数据湖使用非结构化数据,因此不适合使用传统的基于sql的工具进行查询。相反,由于大多数数据都具有合适的3v(体积、速度、多样性),因此可以将其视为大数据并用于训练人工智能算法。
实际上,拥数据湖的目标是让信息实时(或几乎实时)准备好进行处理。这种动态的方法为公司提供了立即反应的机会。将所有数据放在同一个位置意味着在分析之前检索数据的时间更少。
灵活性和规模
数据湖的特性可能是其可伸缩性和灵活性,它可以适应企业数据的任何变化,而不需要对基础设施进行重大更改。由于整个架构是基于云的,通常通过按使用量付费的业务模型进行访问,所以任何升级或降级都意味着只需更改您的支付计划。
这种灵活性与不能实时修改的遗留系统形成了对比。数据湖可以很容易地添加或合并数据。就像是现实中的湖泊,它可以由多条河流汇集,并且可以随时添加新的河流,而不会干扰之前的设置。与此同时,遗留系统就像一个装水设施,任何改变都需要更多的瓶子、更多的标签和重新安排时间。
局限
尽管数据湖有很多优势,但也并不是万无一失的解决方案,也绝对不是万能药。数据湖大的风险在于,它们可能会变成数据沼泽,数据可能会被毫无意义地丢弃。
所有保存的数据流都应该与项目中的kpi和业务目标相结合。避免信息瘫痪的一种方法是创建可视化仪表板,通过仪表板,数据可以被正确显示,即使不是数据库学家也可以理解数据。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。