For investors
股价:
5.36 美元 %For investors
股价:
5.36 美元 %认真做教育 专心促就业
随着互联网的不断发展,越来越多的人都在学习人工智能技术,而今天我们就通过案例分析来了解一下,人工智能技术发展趋势都有哪些。
1.深度学习理论:揭开神经网络工作原理的神秘面纱
它是什么:模仿人脑的深层神经网络已经证明了他们从图像、音频和文本数据中“学习”的能力。然而,即使在使用了十多年后,仍有许多我们还不知道的事情深度学习,包括神经网络是如何学习的,以及它们为什么表现得如此好。这可能正在改变,多亏了新理论这将信息瓶颈的原理应用于深度学习。本质上,它表明,在初始拟合阶段之后,深度神经网络将“忘记”并压缩噪声数据-即包含大量附加无意义信息的数据集-同时仍保留有关数据所代表的信息。
为何重要:准确地理解深度学习是如何使它得到更大的发展和使用的。例如,它可以提供对佳网络设计和体系结构选择的洞察,同时为安全关键或监管应用程序提供更高的透明度。期望通过对这一理论的探索,能够看到更多的结果,并将其应用于其他类型的深层神经网络和深层神经网络的设计。
2.胶囊网络:模仿大脑的视觉加工能力
它是什么:胶囊网络一种新型的深度神经网络,其处理视觉信息的方式与大脑相似,这意味着它们可以保持层次关系。这与卷积神经网络形成鲜明对比,卷积神经网络是应用广泛的神经网络之一,它没有考虑到简单对象和复杂对象之间的重要空间层次结构,导致分类错误和错误率高。
为何重要:对于的识别任务,胶囊网络通过将误差减少50%,保证了更高的准确性。他们也不需要太多的数据来训练模型。期望看到胶囊网络在许多问题领域和深层神经网络体系结构中的广泛应用。
3.深层强化学习:与环境互动解决业务问题
它是什么:一种通过观察、行动和奖励与环境相互作用来学习的神经网络。深层强化学习(DRL)已经被用来学习游戏策略。
为何重要:DRL是所有学习技术中通用的,因此它可以应用于大多数商业应用中。它需要比其他技术更少的数据来训练它的模型。更值得注意的是,它可以通过模拟来训练,这样就完全不需要有标签的数据了。鉴于这些优点,期望看到更多的业务应用程序DRL与基于Agent的仿真相结合在未来的一年里。
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。