For investors
股价:
5.36 美元 %For investors
股价:
5.36 美元 %认真做教育 专心促就业
数据可视化是大数据生命周期管理的最后一步,也是最重要的一步。大数据可视化的实施是一系列数据的转换过程,本文合肥达内计算机培训小编就来说说如何进行大数据可视化的实施?
我们有原始数据,通过对原始数据进行标准化、结构化的处理,把它们整理成数据表。将这些数值转换成视觉结构(包括形状、位置、尺寸、值、方向、色彩、纹理等),通过视觉的方式把它表现出来。例如将高中低的风险转换成红黄蓝等色彩,数值转换成大小。将视觉结构进行组合,把它转换成图形传递给用户,用户通过人机交互的方式进行反向转换,去更好地了解数据背后有什么问题和规律。
从技术上来说,大数据可视化的实施步骤主要有四项:需求分析-->建设数据仓库/数据集市模型-->数据抽取、清洗、转换、加载(ETL)-->建立可视化分析场景。
1) 需求分析
需求分析是大数据可视化项目开展的前提,要描述项目背景与目的、业务目标、业务范围、业务需求和功能需求等内容,明确实施单位对可视化的期望和需求。包括需要分析的主题、各主题可能查看的角度、需要发泄企业各方面的规律、用户的需求等内容。
2) 建设数据仓库/数据集市的模型
数据仓库/数据集市的模型是在需求分析的基础上建立起来的。数据仓库/数据集市建模除了数据库的ER建模和关系建模,还包括专门针对数据仓库的维度建模技术。维度建模的关键在于明确下面四个问题:
哪些维度对主题分析有用?
如何使用现有数据生成维表?
用什么指标来"度量"主题?
如何使用现有数据生成事实表?
3) 数据抽取、清洗、转换、加载(ETL)
数据抽取是指将数据仓库/集市需要的数据从各个业务系统中抽离出来,因为每个业务系统的数据质量不同,所以要对每个数据源建立不同的抽取程序,每个数据抽取流程都需要使用接口将元数据传送到清洗和转换阶段。
在这里我还是要推荐下我自己建的大数据学习交流qq裙: 957205962, 裙 里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据开发相关的),包括我自己整理的一份2018最新的大数据进阶资料和高级开发教程,欢迎进阶中和进想深入大数据的小伙伴
数据清洗的目的是保证抽取的原数据的质量符合数据仓库/集市的要求并保持数据的一致性。
数据转换是整个ETL过程的核心部分,主要是对原数据进行计算和放大。数据加载是按照数据仓库/集市模型中各个实体之间的关系将数据加载到目标表中。
4) 建立可视化场景
建立可视化场景是对数据仓库/集市中的数据进行分析处理的成果,用户能够借此从多个角度查看企业/单位的运营状况,按照不同的主题和方式探查企业/单位业务内容的核心数据,从而作出更精准的预测和判断。
大数据可视化的挑战
大数据可视化面临的挑战主要指可视化分析过程中数据的呈现方式,包括可视化技术和信息可视化显示。大数据可视化的方法迎接了四个“V”的挑战,同时这也是4个机遇。
体量(Volume):使用数据量很大的数据集开发,并从大数据中获得意义。
多源(Variety):开发过程中需要尽可能多的数据源。
高速(Velocity):企业不用再分批处理数据,而是可以实时处理全部数据。
质量(Value):不仅为用户创建有吸引力的信息图和热点图,还能通过大数据获取意见,创造商业价值。
合肥达内IT培训免费试听课程火热报名中,带你轻松入行,26大课程全国45个城市,129家中心均可就近学习,学完后,达内老师会帮助进行面试辅导,在面试前,就带你跨过可能存在的坑,让你入职更加顺利。
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!更多内容请添加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。