For investors
股价:
5.36 美元 %For investors
股价:
5.36 美元 %认真做教育 专心促就业
一般我们需要进行日志分析场景:直接在日志文件中 grep、awk 就可以获得自己想要的信息。但在规模较大的场景中,此方法效率低下,面临问题包括日志量太大如何归档、文本搜索太慢怎么办、如何多维度查询。需要集中化的日志管理,所有服务器上的日志收集汇总。常见解决思路是建立集中式日志收集系统,将所有节点上的日志统一收集,管理,访问。
一般大型系统是一个分布式部署的架构,不同的服务模块部署在不同的服务器上,问题出现时,大部分情况需要根据问题暴露的关键信息,定位到具体的服务器和服务模块,构建一套集中式日志系统,可以提高定位问题的效率。
一个完整的集中式日志系统,需要包含以下几个主要特点:
收集-能够采集多种来源的日志数据
传输-能够稳定的把日志数据传输到中央系统
存储-如何存储日志数据
分析-可以支持 UI 分析
警告-能够提供错误报告,监控机制
ELK提供了一整套解决方案,并且都是开源软件,之间互相配合使用,完美衔接,高效的满足了很多场合的应用。目前主流的一种日志系统。
数据存储:MySQL、HDFS、HBase、Redis、MongoDB
MySQL : Hive元数据库存储在MySQL,处理完的报表数据存储在MySQL中,供前端显示,而数据本身多存储在HDFS等分布式文件系统上。
HBase: 是一种构建在HDFS之上的 分布式、面向列 的存储系统。在需要实时读写、随机访问超大规模数据集时,可以使用HBase。
HBase的特点:
大:一个表可以有上亿行,上百万列。
面向列:面向列表(簇)的存储和权限控制,列(簇)独立检索。
稀疏:对于为空(NULL)的列,并不占用存储空间,因此,表可以设计的非常稀疏。
无模式:每一行都有一个可以排序的主键和任意多的列,列可以根据需要动态增加,同一张表中不同的行可以有截然不同的列。
数据多版本:每个单元中的数据可以有多个版本,默认情况下,版本号自动分配,版本号就是单元格插入时的时间戳。
数据类型单一:HBase中的数据都是字符串,没有类型。
HBase 与 HDFS都是存储数据,他们有啥区别呢:
HDFS适合批处理场景
不支持数据随机查找
不适合增量数据处理
不支持数据更新
到此处,是不是你就明白了他们之间的区别了,有点想win电脑下的文件存储与Mysql数据存储之间的关系。
数据计算:Hive、Tez、Spark、Flink、Storm
Hive:基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。
合肥达内IT培训免费试听课程火热报名中,带你轻松入行,26大课程全国45个城市,129家中心均可就近学习,学完后,达内老师会帮助进行面试辅导,在面试前,就带你跨过可能存在的坑,让你入职更加顺利
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!更多内容请添加3216764521学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。