For investors
股价:
5.36 美元 %For investors
股价:
5.36 美元 %认真做教育 专心促就业
近日出版的《自然》杂志刊登了一篇研究论文:美国亚利桑那州立大学教授艾利克斯·格林和哈佛大学维斯生物启发工程研究所合作,研制出迄今为止最复杂的生物计算机。 该计算机由 RNA(核糖核酸)制成,能在大肠杆菌活细胞内对 12 种不同指令同时作出反应,控制细菌细胞的行为。
RNA 分子内的环状和其他形状的结构可以充当逻辑门,对输入信号作出反应,合成蛋白质(即输出信号)。
研究团队在大肠杆菌的活体细胞内诱导形成的 RNA 电路,能像微型机器人和数字计算机一样执行计算指令。格林表示,他们可以用计算机软件设计想要的 RNA 序列,并利用这些可以预测和编程的 RNA 相互作用,来构筑生物电路,这对智能药物设计、智能给药系统、绿色能源生产、低成本诊断技术,以及未来开发出用于追踪癌细胞或关闭恶性变异基因等的纳米机器,具有重要意义。
不同碱基在活细胞内自成 RNA 电路
早在 2012 年攻读博士后期间,格林就参与研发细胞电路的中心组件——RNA 开关。这些 RNA 开关性能完善后,他们开始在活体细胞内开发更复杂的系统。
格林团队在实验室设计出名叫“逻辑门”的特殊 RNA 电路,然后插入大肠杆菌的活体细胞内。其能像传统数字电路一样,用“与”“或”“非”进行逻辑决定,只是传统数字电路输入输出的是电压信号,生物电路用特定化合物或蛋白质代替电压信号。当作为输入信息的 RNA 片段,与电路中 RNA 序列互补时,两者会结合,RNA 开关被打开,逻辑门得到激活,从而产生想要的输出信号即蛋白质。
与之前研究中需要用到蛋白质等复杂中间体相比,这些只包含 RNA 的细胞内纳米电路是生物计算机领域的重大突破。现在研究人员只要在计算机上设计出 RNA 电路的组成成分,将这些 RNA 的碱基加入活体细胞后,它们会按照预定路线,自组装成与想要的功能一致的 RNA 电路。
堪称天然的奔腾处理器芯片
早在 1994 年,南加州大学科学家伦纳德·阿德曼首次提出可以将数据存储在 DNA 中,并用一条 DNA 解决了超级计算机无法解答的一道复杂数学题。此后,用生命物质 DNA 和 RNA 研发计算机获得快速推进。今年 7 月,有研究人员将电影片段成功存储到细菌活体细胞中,且经过多代更迭后,存储在基因中的电影完好如初。
现在,格林团队开发出的 RNA 电路能在大肠杆菌活体细胞内执行多项计算功能。当两条 RNA 信息 A 和 B 出现时,“与”逻辑门会在细胞内产生“输出”命令;当出现 RNA 信息 A 或者 B 时,“或”逻辑门作出反应;如果输入的是不同于 A 或 B 的另一条 RNA 信息,“非”逻辑门就会挺身而出,切断输出信号。将这些不同的逻辑门结合在一起,就能形成更复杂的逻辑门,对多个任务输入同时作出反应。
格林团队利用 RNA 开关制成的首批 RNA 纳米设备,能同时处理 4 个“与”输入、6 个“或”输入以及包含“与”“或”“非”在内的 12 个输入等复杂操作。这些分别执行感应功能和输出功能的不同电路,能够集成压缩到一个细胞内,让细胞形成蛋白质的过程变得更加简单。
可用于研制神经电路和类脑网络
之前,格林团队曾研发出一种低成本的 RNA 开关试纸,并证明其可作为精准检测寨卡病毒的诊断平台,寨卡病毒的 RNA 能激活 RNA 开关,诱导蛋白质形成,让试纸的颜色发生改变。这类 RNA 测试平台可进行扩展,开发出针对许多不同传染病的低成本精准诊断技术,用于医疗资源和医护人员急缺的发展中国家,应对传染病暴发的紧急情况。
格林表示,他们下一步将重点研究如何在活细胞内用 RNA 开关制作神经网路电路,像神经元对其他神经细胞的输入信号进行加权计算一样,这些神经电路能分析大量兴奋和抑制等信号,随时调整兴奋信号和抑制信号的比例。以此为基础,通过调控分子信号,诱导细胞间相互交流,最终形成能交互作用的类脑网络。“总之,我们的方法提供了一个通用策略,除了用于微生物,RNA 电路完全可用于其他生物甚至人类身上,可以利用 RNA 电路对人类细胞重新编程,延伸其生物功能。”
IT作为目前有前景、有钱景的行业,无数的人加入了这个大军当中。达内时代科技集团致力于培养几大方向中高端软件人才课程与少儿教育课程。合肥计算机培训助你一臂之力,更多免费训练营让你从零起步。
【免责声明】本文系本网编辑部分转载,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与管理员联系,我们会予以更改或删除相关文章,以保证您的权益!